RFMD

UF MURI Kickoff
MURI Kickoff Agenda

• Introductions
• RFMD Background
• RFMD Technologies
• Reliability Processes and Technology Qualifications
• Reliability Issues and Examples
• Future Trends
Introductions

• Dr. Michael Fresina
 – Director, Device Engineering, Wafer Fabs
 – Responsible for new technology development, fab test engineering, characterization and reliability

• Dr. Michael Antonell
 – Senior Manager, WW FA, REL, AS
 – Responsible for failure analysis, corporate reliability lab and advanced analytical solutions
 – UF MURI liaison
RFMD at a Glance

Important Facts

• Global employees: 4,000+
• Founded in 1991
• ISO 9001 and ISO 14001 certified
• FY08 revenue: U.S. $957.6 million
• FY08 pro forma operating income: U.S. $13.5 million
• FY07 total assets: U.S. $2.121 billion
• NASDAQ: RFMD
• Website: www.rfmd.com

Mission

• To extend and leverage our leadership in RF components and compound semiconductor technologies into multiple industries.

End Markets

• Mobile handset and device
• Wireless data
• Wireless infrastructure
• Aerospace and defense
• Broadband and consumer
• General Purpose RF components
Global Reach — 4000+ Employees

- Sales and Customer Support Centers, Sales Offices
- Factory Operations
- Design Centers

RFMD
Global Operations

Greensboro, NC: Molecular beam epitaxial (MBE), compound semiconductor fabrication and test

Beijing, China: Semiconductor assembly, internal module packaging, tape and reel

Broomfield, CO: Aerospace and Defense assembly and test

Brooksville, FL: Signal source component design; MCM manufacturing and test

Newton Aycliffe, UK: GaAs pHEMT fabrication facility

Nuremberg, Germany: CATV component design and manufacturing

Shanghai, China: Passive component manufacturing, ETS in-sourcing, integration, and board-level and subsystem assembly
The Optimal Fit

Through Optimum Technology Matching® (OTM), RFMD engineers match the appropriate technologies to each product according to the best possible combination of price and performance.
RFMD Technology Portfolio

• External Foundries
 - Foundry responsible for qualification including reliability.
 - RFMD is sourcing established process technologies.

• Internal Technology
 - RFMD technology development and qualification.

- SiGe
- CMOS
- GaAs MESFET
- Silicon BJT
- AlGaAs HBT
- InGaP HBT
- GaAs pHEMT
- Gallium Nitride (GaN)
- GaAs BiFET
- SAW Filters
RFMD Internal Compound Semiconductor Technologies

- **AlGaAs HBT**
 - Initial process licensed & transferred from TRW
 - Be-doped base
 - 4th generation in production
 - Internal MBE epi supply

- **InGaP HBT**
 - C-doped base
 - 2nd generation in production
 - External MOCVD epi

- **GaAs pHEMT**
 - 2nd generation in production
 - Switch and PA applications
 - Internal MBE epi

- **GaAs BiFET**
 - 2nd generation in production
 - Switch and PA applications
 - Internal MBE and external MOCVD epi

- **SAW Filters**
 - 1st generation in production
 - LiTaO substrates, AlCu metal

- **GaN HEMT**
 - 1st generation in production
 - External MOCVD epi
MURI Kickoff Agenda

- Introductions
- RFMD Background
- RFMD Technologies
- Reliability Processes and Technology Qualifications
- Reliability Issues and Examples
- Future Trends
Reliability Testing for Technology Qualifications

- Discrete device “3-temp” lifetest
 - Usually 3+ temperatures
 - Typically multiple current densities (HBT) to determine SOA
- Early in development process depending upon risk
- Std criteria is MTTF(125) > 1E6 hours (prefer LCL)
- Migrating towards FIT predictions
 - Failures-in-time, failure rate for first N years (typ 7)
 - Considers predicted failure distribution at use condition
 - Scaled to typical application
- Also various environmental tests (ESD, THB, HAST)
Life Test Procedures

- Discrete device
- Max bias conditions, or varied to extract SOA
- Ambient temps selected for max T_j typically < 300-320.
- Lower temps almost always run eventually to verify E_A

Self Heating

- IR
- Electrical methods
 - Yeats, Bovolon
 - $T_{sh,IR} < T_{sh,Electrical}$
 - Use IR for conservative reliability estimates

![Graph showing relationship between Tamb and T_{sh}](image)
Life Test Data Analysis

Figure 13. Plot of %T0 Beta at temperature vs. time
(FAB3, ambient T = 260 C)

Figure 14. Probability plot for HBT6 life data
(all data, at temperature)
Typical Failure Analysis

- **Pre- & post electrical baseline**
- **Non-destructive**
 - Visual
 - PEM
 - SEM
 - High Res x-ray
- **Destructive**
 - FIB
 - “de-processing”
 - Laser isolation

More important when we are not meeting reliability requirements!
Example: HBT Reliability Issues

- **Failure modes generally assumed:**
 - Be-diffusion
 - REDG
 - Both very difficult to identify/verify

- **Excess unpassivated base surface** increased surface recombination and REDG leading to early beta wearout.
Example: FET Reliability

• **Ohmic degradation**
 – Changes to access resistance

• **Gate sinking**
 – Metal-semiconductor interaction
 • Gate leakage
 • Barrier height changes
 – Intermetallic mixing
Future Trends: Technology and Reliability

• Technology
 – More integrated processes (multiple active devices on same substrate)
 – Smaller devices
 – Higher density circuits

• Reliability Testing
 – Production screening (WLR?)
 – More V&I acceleration to compliment temp acceleration
 – Step stress test

• Failure Analysis
 – T_{sh} measurements
 – p-n junctions location, defects, and doping non-homogeneities
 – Chemical/physical analysis of intermetallics and interdiffusion products