Overview

• Review
 – Motivation
 – System Specification & Features
 – System Hardware
• Current Status
• Challenges & Solutions
• Future Work
Motivation

<table>
<thead>
<tr>
<th></th>
<th>Turnkey</th>
<th>In-house</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline</td>
<td>Purchase lead time</td>
<td>On-going</td>
</tr>
<tr>
<td>System</td>
<td>Proven/Widely-used</td>
<td>Custom design</td>
</tr>
</tbody>
</table>
| **Objective** | Predict life expectancy | Research
determine failure mechanisms |
| **Test Types** | Life Test/Burn-in | Flexible |
| DC Drain Gate | 0-100V, up to 4A, 400W max | 0-60V, up to 6A, 300W max |
| | ±18.5V, up to 200mA | ±10V, up to 20mA |
| RF | 600MHz-3 GHz | 900MHz-10GHz |
| | 2-18 GHz | 36-40 GHz |
| | 58-60 GHz | 76-78 GHz |
| Temperature | 50º to 250º C | 25º to 150º C |
| Optical | NA | Research with wavelength and intensity |
| Thermal Imaging| NA | IR, Micro Raman additional hardware |
| Pulse | 1-100kHz | 1-100kHz+ |
| Data Storage | Independent test files | SQL database |
Review

System Specifications & Features

- 16 Device Capacity
 - Individual device control
 - Gate bias
 - ±10Vdc up to 20mA
 - 0-60Vdc, 6A max, 300W max
 - Drain bias
 - 0-60Vdc, 6A max, 300W max
 - Over-current & over-voltage protection
 - Temperature
 - 25-150° C Peltier heating
 - PID control
 - Controlled in groups of 4
Review

System Specifications & Features

- Long-term DC Stress
 - Types
 - Stress-recovery
 - Step-stress-recovery
 - Step-stress
 - Device Characteristics
 - IV curve
 - Transfer curve, V_T
- Gate Pulse Test (Gate Lag)
- RF Stress
 - 2 GHz
System Hardware

Gate Bias
NI 9224 analog output
±10 Vdc @ 20 mA

Source Drain Bias
Programmable DC Power Supply
60Vdc @ 3.5A

RF
Bias & Control

Z_load
Review

System Hardware

Gate V_G & I_G
NI 9205 Analog Input
16 bit ±10V

Coupler diode detector

Power In
NI 9205 Analog Input
16 bit ±10V

Data Acquisition

P_{rev} 0-5Vdc
P_{forward} 0-5Vdc

Drain V_D
NI 9401 Analog Input
12 bit ±60V

Drain I_D
Current Shunt Monitor 20V/V
NI 9205 Analog Input
16 bit ±10V

Attenuator (30 dBm)

Z$_{\text{load}}$

Power Out
NI 9205 Analog Input
16 bit ±10V

P_{out} 0-5Vdc
Review

System Hardware

Temperature Measurement and Control

http://www.ovenind.com
Current Status

- 8 functional channels
 - Control application is scalable by groups of four
 - Multiple instances of application to control four channels
 - Allows for independent testing
 - Assemble boards to reach full capacity
- DC test
 - Step/Stress/Recovery
 - IV & Transfer characterization
- Sequencing
 - Hardcoded 5 levels
Challenges & Solutions

Oscillations

Dev119
Reticle C
Vg=2

Gate
2.4V_{pp}
5V_{rms}

Drain
6.9V_{pp}

Id
Vd

A 21st Century Approach to Reliability
Challenges & Solutions

CLEAN DC

- R = 100
- C = 0.011111 μF
- f = 143 kHz

Vg: -3 to -2
Future Work

Gate Stress Bias & Control

http://www.testequipmentdepot.com/instek/powersupplies/PSMSeries.htm

A 21st Century Approach to Reliability
Future Work

Specialized Channels

<table>
<thead>
<tr>
<th>Control Software</th>
<th>Channels</th>
<th>Features</th>
</tr>
</thead>
</table>
| 1 | 1-4 | V_D: 0 to 60V
 | |
 | | V_G: ±10V
 | |
 | | Pulse: 1kHz |
| 2 | 5-8 | V_D: 0 to 60V
 | |
 | | V_G: ±10V
 | |
 | | Pulse: 1kHz |
| 3 | 9-10 | V_D: 0 to 60V
 | |
 | | V_G: -60 to 0V
 | |
 | | Pulse: 1MHz
 | |
 | | Precision measurement |
| 4 | 13-16 | V_D: 0 to 60V
 | |
 | | V_G: ±10V
 | |
 | | Pulse: 1kHz
 | |
 | | Precision measurement |
Future Work

• Gate Control with a second power supply
 – Precise multi-range gate current measurement

• Constant drain current testing
 – Feedback on bias voltages
 – Feedback loop Temperature & Power
 – Feedback loop I_D to V_G

• Measure R_D, R_S

• Sequencing